Effects of Zr Additive on Microstructure, Mechanical Properties, and Fractography of Al-Si Alloy
نویسندگان
چکیده
The effects of Zr additive on the microstructure, mechanical properties, and fracture behavior of Al-Si alloy were systematically investigated. The additive of Zr obviously reduced the size of Si particles and changed its morphology. Grain size refinement was promoted by the reaction between Al and Zr forming Al3Zr and ZrSi2 compounds. Compared to a Zr-free alloy, the additive enhanced the tensile strength, compressive strength, shear strength, and hardness. The optimized Zr content was 2.4 wt % corresponding to a tensile strength of 231.1 MPa, compressive strength of 343.1 MPa, shear strength of 174.9 MPa, and hardness of 85.5 HV, greater than those of the Zr-free alloy. This illustrates that fine-grain strengthening and the existence of a second phase can improve the mechanical properties of Al-Si alloy. The fracture surface of Al-Si alloy without Zr additive showed a brittle fracture mode and there were no pits on the fractured surface. In the presence of Zr addictive, a typical plastic deformation with a large amount of pits was evidenced.
منابع مشابه
Effects of Various Ageing Heat Treatments on Microstructural Features and Hardness of Piston Aluminum Alloy
Piston aluminum alloys have different intermetallic phases, such as Cu3Al, Mg2Si ,and AlNi phases. The morphology and the distribution of such phases have important roles on mechanical properties of the piston material. Therefore, in this research, various ageing heat treatments on the mentioned material were done and the microstructural feature and the hardness were studi...
متن کاملEffects of reinforcement distribution on the mechanical properties of Al–Fe3O4 nanocomposites fabricated via accumulative roll bonding
This research developed new nanostructured Al–Fe3O4 composites via accumulative roll bonding (ARB). X-ray diffraction (XRD) analysis and field emission scanning electron microscopy were conducted to examine microstructural characteristics and particle distribution in the nanocomposites. Hardness and tensile strength tests were employed to examine their mechanical propertie...
متن کاملThe Effects of Mould Materials on Microstructure and Mechanical Properties of Cast A356 Alloy
Abstract In this study, the effects of mould materials on microstructure and mechanical properties of cast A356 Al alloy were investigated. The alloy was poured into three different moulds. Then the samples were homogenised and applied T6 heat treatment. The optical, Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) studies were made. Secondary dendrite arm spacing (SD...
متن کاملEffect OF SI and AL on the Microstructure, Mechanical Properties and Machinability of 65CU-35ZN Brass
Relations between the microstructure, mechanical properties and machinability of as-cast 65Cu-35Zn brass with various amounts of Al from 0 to 4.72 and Si from 0 to 3.62 wt% were investigated. Both Si and Al initially enhanced the UTS and toughness of the brass samples, which led to improvement in machinability due to a reduction in the main cutting force. A duplex brass with random oriented α p...
متن کاملProduction of Cu-Cr-Zr Alloy Using Electro Slag Remelting Technique (RESEARCH NOTE)
This study focused on the effect of electro slag remelting process (ESR) on microstructure and composition of an as-cast alloy of Cu-Cr-Zr. These observations revealed that applying ESR process results in a more uniform distribution of alloying elements, however a slight aggregation of large precipitates and inclusions existed in as-cast ingot was found. Additionally, impurities like P, S and M...
متن کامل